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Abstract

Dephosphorylation catalyzed by a base occurs in nucleosjaledsphoramidate4 &-3b) and nucleoside’8hiophosphoramidated&-5b).
The reaction rates for both classes of compounds increase with the basicity of the catalysts in the solution. The kinetics and mechanisms of
the reaction were investigated by NMR spectroscopy and a semi-empirical quantum mechanics method. Our experimental results showed that
the reaction was pseudo first order. The rate constants of the dephosphorylation for come8hdgere faster than those for compounds
4a-5h. The effects of the structures of compounds on the reaction were discussed.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction interest [7—9]. Several nucleoside analogs are important
weapons in the anticancer and antiviral chemotherapeutic
It is well known that phosphorylation and dephosphory- arsenal. The biological activity of most of these analogues
lation of proteins play a very important role in regulating requires intracellular metabolism to’-Biononucleotides
complicated biochemical processes in all living organisms by kinase-mediated phosphorylation. Some nucleotide-5
[1]. Most of the enzymes catalyzing protein phosphorylation phosphoramidates are very efficient HIV inhibitors and
and dephosphorylation reactions employ the hydroxyl have attracted attention as antiviral nucleoside prodrugs
group on the serine or threonine residue of their active site [7,8].
[2,3]. In addition to their roles in the normal metabolism Recently, the first synthesis of a series of nucle-
process, reversible phosphorylation reactions also contributeoside 5-phosphoramidates 14-3b) and nucleoside
to abnormal cancer formation pathwajs-6]. However, 5'-thiophosphoramidatest&-5b) have been achieved and
the chemistry of the phosphorylation/dephosphorylation characterized by mass spectroscopy (MS), nuclear magnetic
mechanism in biological systems is still not very clear. It is resonance (NMR) and elemental analysis. These compounds
even worthwhile to note that the development of nucleoside were designed to act as membrane-soluble prodrugs of
produgs capable of undergoing intracellular activation to bioactive free nucleotides and some have shown selective
the corresponding nucleotide has become an area of intensanti-HIV activity in MT-4 cells[9-11]. It is interesting to
find that dephosphoryl reactions catalyzed by a general
base can take place for both compounds. Here we present
* Corresponding author. Tel.: +86 10 6278 4642; fax: +86 10 6278 1695. the kinetic and mechanistic studies on the dephosphory!
E-mail addressfengyp@mail.tsinghua.edu.cn (Y. Feng). reactions and the factors that affect the reactions.

1381-1169/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.molcata.2005.06.027



240
2. Experimental
2.1. Materials

Nucleoside 5phosphoramidates &-3b) were prepared
according to published procedurfd, and nucleoside’5
thiophosphoramidategl&-5b) were synthesized according
to the method reported ifiL0,11] Their structures were
characterized by ESI-MSH-NMR, 13C-NMR, 31P-NMR,
2D-NMR and elemental analysis.

2.2. Methods

All NMR experiments were carried out on a Bruker AC-

200P or a Bruker AM-500 FT NMR spectrometer. Thé-

and13C-NMR chemical shifts are referred to the TMS and
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CDCls, respectively_slp-NMR spectra were obtained using Fig. 1. 31p_NMR stack spectra for dephosphoryl reaction of compdmd
85% phosphoric acid as an external reference. Kinetic studies

were performed by time evolution of the proton-decoupled products are unstable. THEP-NMR spectra showed that
31p-NMR spectra of the mixture. All the measurements were the dephosphorylation reaction of compourids5b can

performed at room temperature.

3. Results and discussion
3.1. Kinetic study

The chemical structures dd-[2’,3-isopropylidenelD-
[2’,3-diacetyl])uridine-5yl  O-isopropyl N-phosphoryl
serine (threonine) methyl estets2b, O-[2/,3-diacetyl]
thymidine-58-yl O-isopropyIN-phosphoryl serine (threonine)
methyl esters3a-3b, O-[2/,3-isopropylidene]uridine-5yl
O-isopropyl N-thiophosphoryl serine (threonine) methyl
esters 4a—4b, and O-[2',3-isopropylidene]uridine/syl
methoxyserinyl(threonenyl) thiophosphat&a-5b are
illustrated inScheme 1

take place in CHCN when they were treated with a little
NEts. For example, when the base was added, after 20 min
the 31P-NMR signal of compoun@®a (A at 8p: 7.80 ppm)
was transformed into an intermediat® &t p: 21.5 ppm),
while the signal of the produc€(at sp: 5.38 ppm) emerged
(Fig. 1. The finalC reached its maximum after 12 h. Serine
methyl ester and’' ZB'-O-isopropylidene serine were obtained
by TLC (coated with silica gel) in almost quantitative yields
after the reaction was complete. It is interesting to note that
the intermediate was a penta-coordinate, due to giving a sig-
nal at 21.5 ppm. Similar observations were observed for other
compounds.

The kinetic data were determined by the integral area of
the quantitative’’P-NMR peaks, and the rate of reactants
disappearance was considered as the rate of the reaction.
Integrating the appropriate peaks gave th€+thcurves C:

31P.NMR is an important method to monitor the process concentratiort; time), which were found to be a straight line.
of reaction and to get information about the reaction of phos- These results indicated that the dephosphorylation reaction
phorous compounds, especially when the intermediates andf 1a-5b was a first order kinetic reaction. The rate constants
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Scheme 1. Structures of compourids5b.
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Table 1
Thek (s~1) andty, (h) of the reactionT, °C)

Compound

1a(40°C) 2a(40°C) 3a(22°C) 3b (22°C) 4b (60°C) 5b (60°C)
k 3x10°° 1x10°* 9x 1075 2x 1074 1.8x 1076 2.0x 1076
t1o 6.42 1.92 2.14 0.96 10.38 9.42

(k) and half-life time {1/2) were calculated according to Eqs. catalyzing reactions, and the details of the mechanism of

(1) and(2) and are summarized ifable 1 catalysis is under further investigation.
In % =kt (1) 3.3. Structural effects on the reaction
_In2 There are significant differences in the reaction
2=~ @) rates of 5-phosphoramidatesl&-3b) and nucleoside '5
thiophosphoramidates4&-5b). The results of our study
3.2. Effect of basicity of catalysts on the reaction showed that compounds--3b dephosphorylated more eas-

ily than compoundgla-5b under the same conditions. The
Experimental results indicated that the reaction was cat- reaction for compoundksa-3bfinished in less than 12—-20 h at
alyzed by a general base. The rate constlamisre affected room temperature, but it took about 24—36 h for compounds
by the relative basicity of the catalysts and the concentrations4a-5b to react completely at 6QC. It seems that substrate
of the reactants. In order to study the effect of the basicity of structures play an important role in the reactions. The com-
catalysts on the reactions, the reaction rates of compband pounds differ only in the electro negativity of the atom related
were determined with five catalysts with different basicity, to reactivity. The electro negativity of the oxygen atom in
respectively. The data demonstrated that the dephosphorycompoundsla-3b is higher than that of the sulfur atom in
reaction in the presence of catalysts with different basicity compoundsgla-5b, resulting in higher nucleophilicity of the
was also first order kinetic reaction and was accelerated whenP atom in the former than in the latter.
the basicity of the catalysts was increased, with the exception  In addition, we found that the dephosphorylation reaction
of imidazole {fable 9. of 5’-phosphoramidates bearing threonine residue was faster
It is worthwhile to mention that imidazole is aninteresting than those for compounds with serine residue under the same
catalyst in biological systems. It contains two nitrogen atoms conditions. This suggested that the structure had an effect on
and has a unique resonance structure. It can catalyze manyhe reactions also. The difference between serine and threo-
biological and chemical reactions, including cleavage and nine residues is theCHz group that acts as an electron donor.
isomerization of a dinucleotidfl2], and enantioselective  This leads to a higher nucleophilicity of th@OH group in
hydrolysis of esters of amino acids3]. It has previously  threonine than that in serine.
been shown that the formation of penta-coordinate inter-
mediates is promoted by imidazd&4], which means the  3.4. Mechanism studies
reaction is catalyzed more efficiently by imidazole than
by some catalysts that have higher basicity. This is also  Inorderto study the reaction mechanism, itis necessary to
in agreement with the catalytic mechanism of the present note the conformation of compounds. Pyrimidine nucleoside
paper. is generally believed to favor anti conformation in solution.
However, there are several types of catalyst$ahle 2 However, the results from our NOE (NMR) experiments indi-
Triethylamine is an aliphatic amine, and trimethylpyridene cated the glycosyl bonds in nucleosideghosphoramidates
and pyridine are aromatic amines. Comparing their basicity (1-3) and nucleoside '&hiophosphoramidate<5) favor
and structure versus reaction ratesTiable 2 it seems syn orientation. There were significant NOE cross-peaks
that aspects of the structure also play an important role in between H-%and H-2 of the ribose ring and H-6 of the
pyrimidine of compounds in the spectra, namely, the 2-keto

Table 2 group of the pyrimidine base over the ribose ring. Because
Comparison of the kinetic data of compoubawith different catalysts this conformation was formed, we assume that there are
Base T(C) pkp k(s tyo (h) probably two pairs of hydrogen bonds between carbonyl,
Hexahydropyridene 22 288 710~ 0.28 hydroxyl groups of serine (threonine) and the. pyrimi'dine
Triethylamine 22 3.28 %1075 6.42 base Scheme P The results from the semi-empirical
Imidazole 40 7.05 klO‘Z 19.25 guantum mechanics computation support this assumption
Trimethylpyridene 40 6.57 %10 27.51 to some degree. The model established by full geometric
Pyridine 40 8.83 6106 32.09

structure optimization (AM1 method) revealed two pairs of
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Scheme 2. The proposed catalytic route for the dephosphorylation.
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